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One Year Later 

This article is intended to be a follow up article to one released about a year ago through 
PC Perspective. A lot of things have changed since then. Real-time ray tracing for desktop 
machines is just around the corner.  
 
Introduction  
 
If you are new to the topic of ray tracing you might want to read through this section.  
 
Ray tracing is a rendering technique that generates a 2D image out of a given 3D scene. 
This is done by simulating the physics of light propagation using rays. The algorithm shoots, 
for every pixel on the screen, a so-called "primary ray" from the perspective of the eye of 
the viewer. The ray tracing algorithm then determines which object is hit first on the path of 
the ray.  
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At that hit-point a shader program is invoked which could, for example, cast another ray to 
simulate (say) a reflection at a mirror.  

 
 
Through so-called "shadow rays" it can be easily determined if a given pixel is lit or in 
shadow. If a ray from the point in question can be shot to the light source without being 
blocked, then it can be concluded that light reaches that point. In the other case – when it 
is blocked – then we can conclude that the point is in shadow.  



3 

 

 
 
The ray tracing approach I am reporting about in this article is calculated completely on the 
CPU. No graphics card is needed to create the image. (Once created, we merely transport 
the pixels to the graphics card to have it paint the image onto the monitor).  
 
Another approach to generate a 2D image out of a 3D scene is called "rasterization" and is 
currently performed by special-purpose hardware graphics cards. Currently, this the 
standard way that games "render" the images you see using standard libraries like DirectX 
or OpenGL.  

Progress 

After my last article about ray tracing and gaming hit the web I did some more research on 
scaling of ray tracing with the number of CPU cores. In order to simulate a 16-core machine 
I took four quad-core PCs and connected them over a Gigabit-Ethernet to combine their 
power. Because my project used the ray tracing library OpenRT from Saarland University 
which supports distributed rendering, this was quite easy to achieve.  
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Performance scaling of ray tracing with different number of cores  

 
The results were amazing: If you use a 16-core machine instead of a single-core machine 
then the frame rate increases by a factor of 15.2!  
 
After all the attention the previous ray tracing article got around the world I was contacted 
by several companies interested in this technology. One of them was Intel. They told me 
they would have a real-time ray tracer that would be around 10× faster than everything 
else that has been published so far. These performance numbers were already written down 
in some research papers, but I did not trust them without seeing it myself. So I went over 
to Santa Clara to get a live demonstration of it.  

   
Then I saw it trace,     

now I'm a believer!  
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So now I am a full-time research scientist working for Intel on ray tracing. As it turns out, 
Intel’s labs are very interested ray tracing because it is so well suited to general purpose 
CPUs. Our ray tracing research is just a part of an overall program here called “tera-scale 
computing” aimed at scaling CPUs from a few cores to many (meaning tens or hundreds).  
   
Joining Intel also gave me the chance to demonstrate Quake 4: Ray-Traced with the new 
Intel ray tracer on several occasions such as the Games Convention 2007 in Leipzig and 
Intel Developer Forum  Fall 2007 in San Francisco. At the latter event it was even featured 
in the keynote from Justin Rattner (Intel CTO) about virtual worlds.  

 
 
At HD resolution we were able to achieve a frame rate of about 90 frames per second on a 
Dual-X5365 machine, utilizing all 8 cores of that system for rendering.  
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More details about the presentation at Fall IDF 2007 can be found in Ryan Shrout's article at 

PC Perspective. 

 

Ray tracing faster than rasterization: Example 1 

I have been asked several times when ray tracing will become faster than rasterization (the 
current GPU approach for rendering). There are cases in which it is faster on a single 
desktop machine TODAY!  
 
Example 1: High number of triangles  
 
Ray tracing uses "acceleration structures" that sort all the geometry of a virtual world 
according to their position in space. There are several different acceleration structures, but 
the most common ones used in ray tracing are Uniform Grids, BSP-trees, kd-trees and 
Bounding Volume Hierarchies (BVHs).  
 
As described in the introduction, when a ray is shot, we must find the first object that is hit 
by that ray. The general idea of spatial partitioning / acceleration structures is best 
described through a small example:  
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Imagine you have a building with 4 levels and on each of those there are 4 rooms, if a 
player is located in the top-most, left-most room as shown below:  

 
Artistic representation of a building with 4 levels with each 4 rooms  

 
When ray tracing, we want to figure out whether a piece of geometry is hit or not. In ray 
tracing speak we talk about a "camera" and when we shoot rays through it to determine 
what is visible we refer to these as "eye rays" or "primary rays". Naively, we could just 
shoot eye rays everywhere and see what gets hit and what does not. Clearly, in the above 
example 15/16 of these rays would be wasted. Thinking about this situation a little, it seems 
obvious that it is very unlikely that the camera will "see" anything in the right-most room on 
the lowest-level, so why even bother checking if a ray hits any of the geometry from that 
area? How can we avoid such redundant work?  
 
With hierarchical spatial acceleration structures we can just look at a convenient 
representation of an area and determine if there is any interesting detail there worth 
investigating further. If not for a given area or volume, we can save a lot of computational 
effort. This way we can focus computational resources on the areas where the geometrical 
details are located.  
 
One advantage of such hierarchical data structures is that they have the effect of changing 
a "linear search" – check everything (every time) to see if there is a match of interest -  to 
a "logarithmic" search – check the highest level which represents the bounds of a large 
area, if and only if there is detail of interest in this area, then proceed to the next level. In 
the above example, the "top" level might represent the 4×4 grid...  
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...the next level might split the grid right down the middle top to bottom...  

 
 
...on the left side that half might be split in the middle from side to side etc.  
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In the linear case we check every square in the grid – 16 units of work. In the logarithmic 
case, in step one, we eliminate the right half; In step two we eliminate the left, bottom half; 
In step three, the right half of the remaining quartet, and; In step 4, we determine which 
remaining half the interesting detail is in – so 4 steps instead of 16. If we increased the 
number of grid cells to 32, the result would be 32 checks in the linear case to 5 checks in 
the logarithmic case and so on. One way to think of this is that if we increase the 
complexity of a scene 10 times, using a hierarchical acceleration structure increases the 
cost of finding something by only 2×. Contrast that with the traditional rasterization 
approach, it is condemned to use a linear approach, so if we increase complexity by 10× the 
cost goes up by 10×.  
 
This behavior is represented in this diagram:  
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The green curve represents the logarithmic behavior of ray tracing when the number of 
triangles are increased, the red line represents the linear behavior of rasterization. As you 
can see, initially for ray tracing (when the polygon count is low) ray tracing performance is 
at a disadvantage compared to rasterization, but quickly the two curves meet, and from 
that point on, as complexity increases ray tracing is ALWAYS faster than rasterization. This 
cross-over point depends on many factors: the performance of the CPU, the performance of 
the GPU etc, but this trend is a mathematical certainty, a logarithmic curve will always 
intersect a linear curve and the logarithmic curve will always win! Due to the linear scaling 
of ray tracing performance, doubling the number of CPUs would shrink the height of the 
green curve by half, moving the intersection point (S) closer and closer to 0, ie throw 
enough CPU cores at the problem and Ray Tracing would always be faster than 
Rasterization using a GPU.  
 
One example that clearly is above that point is the Boeing 777 model with 350 million 
triangles. This extreme highly detailed model that includes every screw of the plane has 
been provided by Boeing to the research community in order to experiment with methods 
on how to render it.  
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Ray tracing has been proven to be the right solution for that (http://graphics.cs.uni-
sb.de/Publications/ ). Even back in 2004 the research group from Saarland University was 
able to render the model with 3 to 7 frames per Second at 640x480 pixel resolution with a 
dual-core CPU from that year.  
 
The question may arise, why can't these acceleration structures be used in rasterization? 
Well, they are, to a certain extent, but at a lower precision. Some games have one such 
coarse-grained structure for rendering graphics, a different one (at a different resolution) 
for collision-detection and yet another one for AI (sometimes created by different third-
party infrastructure suppliers). Besides taking up more memory than necessary, one 
problem in using these three separately computed data structures is the effort to keep them 
consistent. See below for an example of what happens when the information from the 
collision detection structure differs from the rendering structure.  
 
In the game "Oblivion" two different structures are used for graphical rendering and for 
collision detection. The process of a slowly closing door, changing its angle from frame to 
frame is clearly visible to the player. Therefore four states can be speculated: Open, closing, 
closed and opening. But the structure for collision detection engine does not update the 
dynamic movements with fine details such as the angle that the door is currently at. 
Therefore other NPCs like "Velwyn" can detect only two states of the door: Open; or Closed.  
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What happens in the game as a result, is that Velwyn approaches the player while is 
obviously closing, but Velwyn only gets information that the door is either open or closed. 
So we can end up in the situation depicted below where the character ends up mixed up 
with the door.  

 
Velwyn stuck in the door in Oblivion (2006)  

 
(Of course ray tracing can also be used for collision detection to avoid those problems but 
that is another story.)  
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But even if the acceleration structure for graphical rendering is consistent with the rest then 
there is another problem: In ray tracing we are testing a ray in a per-pixel exact method 
against the triangles. In rasterization there are no rays therefore the relevant area / volume 
of the structure can only be approximated. This can be done by different methods. Let' have 
a short look at two of them:  

• Time consuming pre-calculations resulting in statements like "When I am in this 
room 1, then I could potentially see into room 2 and 3, but not room 4."  For more 
information have a look at the Wikipedia entry for "Potentially Visible Set"   

• Manually placed hints from a level designer for the engine known as visibility portals. 
Those consume a lot of time for the artists, e.g. Quake 4 has 3,200 of them. So far 
automatic algorithms for this have not made it into the practical world of game 
developers. The evaluation of the portals during the rendering process leads to 
complicated multi-pass techniques: First the scene is rendered with placeholders for 
these portals. Once it is detected that one of the placeholders is visible then this part 
of the scene is rendered again in full detail. More information can be found here.   

Ray tracing faster than rasterization: Example 2 

The second example is a case study on multiple reflections in reflections on spheres and 
tori.  

 

 
 
 
 
 
 
 

 
 

  

A Torus is the mathematical term for a 

geometric object that has the shape of a donut. 

The plural of a Torus is some Tori. 
 

Mmm… Donuts!     
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Multiple reflections in reflections - Click here for 80MB PNG file (10200x6000)  

 
If we could just pretend for a moment, and ignore the fact that is scene would be impossible 
to render this scene using rasterization, not only is it possible to do this correctly with ray 
tracing, it's actually much cheaper than you might think! Ray tracing efficiently and 
accurately calculates all reflections on an as-needed basis. That means that only what is 
actually visible will be actually calculated. Consider the following sequence of images to see 
how the rays are actually used:  
 
Step 1: "Eye" rays – at least one per pixel - (Tinted Red)  
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Step 2: Primary reflections (Tinted Green)  
   

 
 
 
Step 3: Secondary reflections (Tinted Blue)  
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Step 4: 3rd order reflections (Tinted Yellow)  

 
 
 
Step 5: ...  
 
So clearly, with each iteration, the number of subsequent reflection rays decreases 
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dramatically, therefore even a complex scene with many reflections represents only a small 
incremental cost with ray tracing.  
 
How are reflections handled in rasterization?  
 
In order to simulate reflections, the scene is pre-rendered from at least one camera position 
and saved to a texture map (called a reflection map, sometimes a cube map) which is then 
applied as a layer of texturing in a subsequent rendering of the scene, a similar method is 
used to create shadow maps, each of these passes requires rendering the scene before you 
really render the scene!  
 
There are different cases and methods:  

• Below is an example of a one-pass reflection map texture notice the fish-eye lens 
distortion effect.  

 

• Here is a 2-pass reflection mapping which results in parabolic distortion.  
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• Here we have 6 passes to create a cube-map.  

 
Image copyright Paul Bourke 

(http://local.wasp.uwa.edu.au/~pbourke/projection/cuberender/)  
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• There are several more algorithms that result in only minor improvements over 
these techniques  

 
Limitations of the rasterization approaches:  

• Rendering into a texture can lead to visible jaggies due to incorrect sampling issues 
(an object that may have been far away from the camera in the reflection map 
calculation pass, and hence represent a tiny part of the reflection map, might end up 
being much closer to the camera during game play and hence get distorted).  

• Rendering into a texture consumes time. Worst case: In the final image only one 
pixel of the reflection is visible, but to create the cube map approach the scene has 
been rendered additionally six times.  

• How to handle multiple reflections? Very difficult to achieve, and in most cases just 
hopelessly impossible. It requires pre-calculating the reflections then rendering the 
scene, then evaluating the reflections in reflections and then re-rendering the scene 
and...  

• As these reflection maps are not based on physical laws therefore the reflections are 
not correct anyway.  

 

What all those approaches try to do is an approximation of ray tracing.  

 

As mentioned in the first example: The speed of ray tracing scales logarithmically with the 

number of triangles. This applies, of course, also for all reflection rays. So in a scene with a 

very high poly count and with reflections ray tracing can take even greater advantage of 

this situation (ie single rendering pass, only pay for reflections where they actually happen). 

 

Special Effects: Portals 

In cinematic image rendering, ray tracing is often used because of its unique capabilities to 
deliver special effects robustly, where other algorithms fail or are unreliable. The following 
section will cover two special effects that are relevant to gaming and could increase the fun 
factor significantly: Camera portals and reflections.  
 
Special effect #1: Camera portals  
 
A common feature of 3D shooter games is the camera portal. It tempts the player to see 
into another part of the scene despite the fact that the player does not have the necessary 
privileges to participate there.  
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Camera portal in Quake 3: Arena (1999)  

 
It is interesting to see how easy and efficient this effect can be created using a ray tracer. 
Let's take a look at the scene setup:  
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The player is standing on the lower level. In front of him is a camera portal that he is 
looking through. On the upper level there is an interesting potential enemy character. What 
we want is pretend that the portal magically teleports us to the upper level.  For ray tracing 
this simply means that we just need to offset the "eye" rays we shoot that hit the camera 
portal to a new origin and then to re-project it from there as shown below:  
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In programming code it looks like this:  
 
    // finding out at what point in space the ray hit that called  
    // this shader program  
    Vector3D hitPosition = getHitPositionOfRay(ray);  
 
    // adding a 3D offset to that hitPosition  
    hitPositon += cameraPoralOffset;  
 
    // shooting a new ray from the hitPosition with the offset  
    // into the same direction as the ray that has called this  
    // shader program  
    finalColor = traceNewRay(hitPosition, getDirectionOfRay(ray));  
 
Voilà, after only three lines of code you got a camera portal. Here it is applied to Quake 3: 
Raytraced:  
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Camera portal in Quake 3: Raytraced (2004)  

 
In October 2007 Valve released a game called "Portal". This game has an innovative game 
concept: By strategically manually placing portals in a game level, the player is able to 
magically travel to various locations and solve puzzles. From a technical standpoint it is very 
interesting to see how they implemented the portal-in-portal effect.  
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The game "Portal" from Valve (2007)  

 
The implementation of this effect is pretty robust. The game is designed in a way that these 
portal-in-portal effects never become so close that the recursion depth becomes excessive. 
Nevertheless, with some experimentation and testing, one is able to detect the limitations of 
this approach as in the following screen-shot where the recursion depth reaches its pre-
determined limit. This can be seen in the center of the camera portal where the box should 
have been repeated more often.  
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The visual representation of the box stops repeating itself close to the center of the portal  

 
It is interesting to note how the code for the ray traced version needs to be changed in 
order to also allow camera portals in camera portals: No changes at all! It still runs with 
exactly the same code. Just the offset parameter needs to be changed so it looks in front of 
the camera portal as illustrated here:  
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In order to have such an effect in a rasterizer, the image with a "blank" camera portal must 
be rendered to a texture first. Then a part of this texture needs to be carefully applied to 
the blank spot. Then again a bit smaller version over the center of the area that was a blank 
spot before and again and again…  
 
Rendered using the three lines of code from above in a ray tracer, it looks like this:  
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Scene from Quake 4: Ray-Traced. In the center the # portals in portals is ~130  

 
As noted above, the portal effect is efficient insofar as only those pixels affected "pay" with 
additional rays to achieve the effect, the exact same applies to reflections. And again, the 
same principle with reflections applies such that the number of pixels effected at every 
subsequent recursion gets fewer and fewer, only a tiny percentage of the rays end up 
having really deep recursions and therefore high calculation costs.  
 
You can afford to do amazing things - like have two camera portals side by side and have 
both of them visible within each portal – mind blowing stuff! Guess what: Same code!  

 
Q4RT: Two camera portals in camera portals  
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Special Effects: Gameplay reflections 

Special effect #2: Increasing gameplay using reflections to detect incoming 

enemies  
 
For safety reasons, it is pretty common to hang mirrors on a wall at corners so that people 
don't run into each other when they are in a hurry to get to lunch for example.  

   

  
 

 
 
Similarly, hardcore 3D shooter players would like to know what is around corners. Maybe 
there is an enemy approaching? Perhaps, an ally? With ray tracing it is a very easy task to 
just place such a mirror in place and enjoy the increased possibilities in game-play.  

 
Quake 4: Raytraced – Putting a mirror in the corner to see into another hallway  

 
Here is a video where the additional information about an approaching enemy in another 
hallway, gathered through such a mirror is taken advantage of. Only in this way would the 
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player be able to predict the arrival of the monster and to place a rocket into it's direction at 
the right time.  

 
Download 1280x720 XviD video here  
 Download 1280x720 WMV video here  

 

Hybrid Rendering: Combining Ray tracing and rasterization 

Hybrid Rendering: Why it is a bad idea and why it will be done nevertheless.  
 
How will ray tracing for games hit the market? Many people expect it to be a smooth 
transition – raster only to raster plus ray tracing combined, transitioning to completely ray 
traced eventually. They think that in the early stages, most of the image would be still 
rasterized and ray tracing would be used sparingly, only in some small areas such as on a 
reflecting sphere.  
 
It is a nice thought and reflects what has happened so far in the development of graphics 
cards. From the initial fixed function pipeline some minor parts were opened up to 
programmers. Going from very hard to program "register combiners" to vertex and pixel 
shaders. Then these were improved over a long period of time in very small steps, resulting 
in a smooth transition from one advancement to another.  
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Source: http://de.wikipedia.org/wiki/Pixel-Shader  

 
So it is understandable that people have it in their minds that ray tracing should be 
introduced in small steps. The only problem is: Technically it makes no sense.  
 
Scene example 1  
 
Let's assume a typical game scene setup from Quake 4 with one additional reflecting sphere 
that is far away like on this screenshot:  
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One could render everything but the sphere with rasterization and then do only ray tracing 
for the sphere. In order to do that efficiently one would still need:  
 
•    A fast ray tracer  
•    Up-to-date acceleration structures (e.g. BSP-tree, BVH-tree) for the entire scene  
 
If the world was complex you would potentially have to rasterize far more triangles than the 
number of rays that would be used instead, but let's put this aside for now.  In this scenario 
we "saved" from having to calculate for all the primary rays under the assumption that the 
rasterization algorithm will resolve all the primary visibility queries.  
 
Scene example 2  
 
The upper screenshot looks quite boring, because it has no lights and no shadows in it. In 
the lower example each pixel is being lit by an average of 3-5 light sources simultaneously.  
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If we use ray tracing to render all the shadows accurately, then each pixel would ordinarily 
require one visibility ray and 4 shadow rays. If we were to use rasterization to achieve the 
same quality image, it would only save us the 1 visibility ray per pixel. Rasterization 
techniques simply are not robust enough to achieve the same kind of accuracy and fidelity 
as ray tracing for shadows, reflections and refractions. If you imagine a trend toward higher 
and higher quality, the savings of using rasterization for the visibility determination trends 
towards insignificance.  
 
Scene example 3  
 
The previous examples showed the reflecting objects from afar. But what if one zooms in on 
such an object so that it fills almost the entire screen? In a game environment where the 
player is capable of moving around freely, such situations are unavoidable.  
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Now about 90% of all pixels need to be ray traced. Therefore the hybrid rendering approach 
could only "save" 10% of the primary rays.  
 
Scene example 4  
 
I'll leave it to your imagination to figure how this approach would work out when the 
reflection would now also contain lights and shadows…  
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This leads us to the conclusion that a hybrid rendering approach for rendering the 3D world 
might not be the best idea. The only useful application of such a hybrid approach that I can 
think of would be for layering 2D data like a HUD, a console or maybe even a 3D 
perspective of a cockpit, but not for the actual 3D scene computation.  
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Fonts and crosshair layered over the ray traced image with semi-transparent quads in 

OpenGL  
 

Nevertheless I would not be surprised to see demos of this approach from people who 

want to push the idea of hybrid rendering. But I doubt this will make it in a really 

convincing way into a commercial game.  

 

Stay tuned for more information and thank you for reading this article!  
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